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ABSTRACT:The aim of the present study is to develop amethodology for the rapid estimation of taro (Colocasia esculenta) quality.
Chemical analyses were conducted on 315 accessions for major constituents (starch, total sugars, cellulose, proteins, and minerals).
NIRS calibration equations, developed on a calibration set composed of 243 accessions, showed high explained variances in cross-
validation (r2cv) for starch (0.89), sugars (0.90), proteins (0.89), and minerals (0.90) but poor response for amylose (0.44) and
cellulose (0.61). The predictions were tested on an independent set of 58 randomly selected accessions. The r2pred values for starch,
sugars, proteins, and minerals were, respectively, of 0.76, 0.74, 0.85, and 0.85 with ratios of performance to deviation (RPD) of 3.41,
4.01, 3.78, and 3.64. New calibration equations developed on 303 accessions confirmed good RPD values for starch (3.30), sugars
(4.13), proteins (3.61), and minerals (3.74). NIRS could be used to predict starch, sugars, proteins, and minerals contents in taro
corms with reasonably high confidence.
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’ INTRODUCTION

Taro (Colocasia esculenta (L.) Schott) is a traditional food
of cultural importance throughout the World. Corms may be
roasted, baked, boiled, steamed, or fried. They may be processed
into fresh or fermented paste, canned corm portions, flour,
beverage, chips, and flakes. Hundreds of different varieties exist,
and depending on their chemical composition different products
or dishes can be prepared.1

Internal color of raw taro corms ranges from white, yellow,
orange, to dark purple and may include combinations of two or
more colors. The texture of corms varies after cooking: some are
acrid, and some contain high proportions of oxalate. Oxalate is
toxic in relatively low concentrations, and the calcium salt may be
present as needle crystals, which irritate the mouth membranes.
There is, however, a nonidentified cofactor, most likely a pro-
tein, which contributes to acridity.2 Chemically, there is also
significant variation of the major nutritional constituents be-
tween varieties. These differences are well-known from consu-
mers and traders, and the wrong choice of a variety can cause a
serious constraint to the development of taro for food processing
purposes. A preliminary survey of the physicochemical charac-
teristics of 31 varieties planted and harvested the same day in the
same plot revealed great variation for proteins, sugars, minerals,
starch, amylose, and dry matter contents.3 The large range of
values found for a particular trait such as proteins, carotenoids, or
anthocyanins shows that there is considerable potential for taro
quality improvement through breeding.4�6

Taro breeding is progressing, and germplasm collections are
being characterized with morpho-agronomic descriptors and
molecular markers. Molecular studies have revealed the presence
of two distinct genepools in Asia and the Pacific and the need to

use germplasm from both genepools to broaden the base of
breeding programs.7 DNA markers allow an assessment of
genetic distances, maximizing chances of getting significant varia-
tion in progenies,8 and a first genetic map of taro has been
developed.9 Taro seeds can be generated in large quantities and
allow the intense screening of thousands of highly variable hybrid
seedlings. Visual tools are then used at an early stage to screen
progenies for morphological characteristics.10

However, the chances of getting a high yielding hybrid with
excellent eating quality are very low, and they become much
lower when the selection procedure includes resistance against
diseases. Corm yield and corm quality appear to be negatively
correlated. Soft corms, with high water content, generally char-
acterize high yielding hybrids. Unfortunately, the physicochem-
ical characteristics determining the quality of the corms are very
expensive and laborious to assess. Low-cost methods for evalua-
tion of numerous accessions need to be developed. NIRS (Near-
infrared reflectance spectroscopy) has been used to predict
major constituents contents in maize,11 rapeseed,12 sorghum,13

sugar beet,14 malt,15 wheat,16 potato,17 and tropical root and tuber
crops.18 These various studies indicate that NIRS could be a
useful tool for taro breeding, selection, and quality control.

In the present study, we attempt to elucidate the potential
relationships between taro corm quality and variation in major
constituents composition of the varieties. We also investigate the
potential of NIRS as an alternative method for predicting these
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major constituents. The results and their practical applications
for improving the quality of the taro corm are discussed.

’MATERIALS AND METHODS

Blind Tasting Panel of Taro Varieties. Taste evaluation of
different taro varieties was conducted using the germplasm collection
maintained by the VARTC (Vanuatu Agricultural Research and Train-
ing Centre) in Santo. Accessions planted 1� 1m in a common plot were
harvested when mature 7�9 months later. Blind tasting panel was
conducted on 340 taro varieties, and evaluated for their eating quality in
17 tasting sessions. The central part of the corm of each variety was cut
into slices 3 cm thick and boiled in water. Cooking time depended on the
variety, and readiness was assessed by pricking the slice flesh to appre-
ciate its consistency; it varied from 19 to 50 min. This assessment is
identical to the one conducted by regular taro consumers. It is done by
frequently pricking the piece of corm with a fork to verify that it goes
through but that there is resistance and firmness; if it goes through easily,
it indicates that the piece is overcooked. During each tasting session, 20
varieties were cooked and evaluated by a panel of 10 individuals. The
taste panel was composed of five women and five men of age ranging
from 20 to 60 years, all indigenous Vanuatu citizens (Melanesians) and
all regular taro consumers. Each variety slice was then cut into five pieces,
resulting in 100 pieces for degustation in a session. Each taster recei-
ved two plates at a time, with 10 pieces of boiled taro, each piece
corresponding to a different variety.19

Tasters were separated in two groups with tasters 1�5 receiving
varieties under a first set of numbers and tasters 6�10 receiving the same
under a different set of numbers. Tasters were seating at tables laid out
on a “U” shape in the roomwhere tasters from the first groupwere seating
next to a taster from the second group. Each variety was identified under a
different number on each plate. These numbers did not correspond to the
real variety number and changed from one taster to the other. The tasters
could drink water between tests and taste the variety as many times as
they wished. Each variety was tested five times by different tasters. The
mean of five scores was recorded for each variety, and the standard
variation of the mean was used to assess scores reliability. Varieties were
classified according to their mean scores into four groups: poor quality
(2), acceptable (3), good (4), or very good (5). Tasters were also
requested to record when varieties were acrid (presence or absence).
Chemical Analyses. Overall, 315 accessions representing varieties

from various geographical origins as well as hybrid lines were chemically
analyzed. One full corm was peeled and cut. Approximately 0.5�1 kg of
fresh weight, corresponding to the central part of the corm, wasmanually
sliced into chips and oven-dried at 60 �C for 48 h. Dry matter samples
were split into two subsamples: one subsample was used for chemical
analysis, and the other was used for NIRS. Samples of 200 g were sent
to Laboratoire d’Analyses Agricoles Teyssier, Bourdeaux, France, for
chemical analyses. Samples of approximately 50 g of dried chips were
milled into flour just after oven drying, and dried chips were ground in
a stainless kitchen steel mill (SEB, France) prior to NIRS analysis in
Vanuatu.

Major constituents (starch, amylose, sugars, cellulose, total N, and
ash) were analyzed according to AFNOR (Association Franc-aise, the
French standards association) and EEC methods.20 Following NF
(Norme Franc-aise) V 18-109 for dry matter (DM) determination,
samples were dried again to remove residual moisture (measured as %
of total dry weight), and the powder was analyzed on an oven-dried air
basis. Moisture was therefore expressed as a measurement of the sample
prior to drying. All measurements were then expressed in %DM, and the
data were adjusted by the residual moisture following oven drying.

Starch was quantitated using Ewers protocol (NF ISO 10-520)
corresponding to hydrolysis in HCl, filtration, and polarimetric mea-
surement (specific rotation: 185.7�). Amylose measurement was done

by colorimetric analysis using a standard iodine solution (NF EN ISO
6647-1) (on 200 accessions only for budget reasons). Total sugars were
quantitated through the colorimetric method of Luff Schoorl (CEE
98\54\CE). Crude cellulose (total fibers) was measured by the Weende
method (NF V 03-040), which corresponds to nonsoluble organic
residue obtained by sulfuric acid and alkaline treatments. Total N content
(considered as equivalent total proteins) was calculated using the
Kjeldahl method (NF V 18-100). Estimation of total minerals content
was obtained from ashes produced at 550 �C (NFV 18-101). All analyses
were performed in duplicate with accepted mean coefficient of variation
(SEL) of (3% for starch, amylose, sugars, cellulose, and residual
moisture and (2% for proteins (equivalent N) and ashes (minerals).
NIRS Measurements and Data Pretreatment. Dry matter

samples were milled into flour, and granules size was homogenized using
four sieves with decreasing diameters until granules passed through the
106 μm sieve. An ASD LabSpecPro spectrophotometer from Analytical
Spectral Devices Inc. (ASD Inc., Boulder, Colorado, CO) fitted with a
“muglight” or High Intensity Source Probe (HISP) (ASD Inc.) was used
for the measurement of all spectra over the wavelength range of
350�2500 nm. On average, 6 g of homogenized taro flour was placed
in an individual cell and compacted with a tea spoon to eliminate air
voids within the sample. Each spectrum was obtained by averaging three
different cells (repetitions) per sample with 25 scans for each. A reference
reading (baseline) was takenwhen starting a session and another every 30
min. All of the spectra were recorded in diffuse reflectance as log(1/R)
with respect to a Labsphere’s Spectralon material reflectance standard
(Labsphere Inc., North Sutton, NewHampshire), which is a Lambertian
reflective PTFE (thermoplastic resin) with high overall reflectance. For
each sample, corresponding to individual accession, three subsamples
were scanned 25 times each and then averaged. The resulting averaged
spectrum was recorded for the accession. Overall, 303 spectra were
recorded and converted to absorbance using the Indico software (ASD
Inc.). To assess the performance of the calibration, samples were
separated into two sets: the calibration and the prediction sets. The
prediction set was created by randomly selecting 58 accession numbers
(approximately 20% of total 303 acc.) and the calibration set contained
245 samples (for amylose, the calibration set included 160 acc. and the
validation set included 40 acc.).
Data Analysis.Major constituents chemical data were subjected to

multivariate analysis using XLSTAT (version 6.02, 2009). Multivariate
analysis (Principal Component) of the spectra was conducted with
GRAMS/AI (version 8.0). The spectra and reference data were math-
ematically modeled using PLSPlus/IQ spectroscopy software (Thermo
Electron Corp., OH). Using the values obtained with chemical analyses
as the analyte value, a separate calibration was made for each of the six
major constituents. Calibration of residual moisture was not attempted
because spectra were recorded in Vanuatu, just after oven drying the
samples, while residual moisture wasmeasured in France on hygroscopic
dry raw material. Partial least-squares (PLS) regression technique was
used to develop a predictive model of the near-infrared part of the
spectra (1000�2500 nm). The optimum number of PLS factors used for
prediction was determined by full cross-validation and PRESS (prediction
residual error sum of squares). Additionally, light scattering effects due to
particle size differences were corrected bymultiplicative scatter correction
(MSC). The data were mean-centered, and the average spectrum was
calculated from all of the calibration spectra and then subtracted from
every calibration spectrum.

As part of the model process, a principal component analysis (PCA)
was used to check for gross spectroscopic outliers. The Mahalanobis
distance of each spectrum to the mean spectrum of the group was
calculated, and the removal of outliers was based on distance H > 3
from the average spectrum of the file. Spectra and concentration
outliers were removed, and PLS was run again until the highest r2cv
(determination coefficient for cross validation) corresponding to the
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smallest SECV (standard error of cross validation) was obtained.
At that point, factor loadings were used to determine which wavelengths
were important to correlate with concentrations to narrow down the
spectroscopic region. The loading plots showed which wavelengths were
important to correlate with concentrations. The loading weights showed
howmuch each wavelength point contributed to explaining the response
along each model component. For starch and amylose, the regions used
were 1200�2200 nm, while for sugars, proteins, andminerals, the region
was 1200�2400 nm, but for cellulose, the region was 1400�2000 nm.
The PLS analysis was then conducted again on these new regions to
obtain for each constituent equations with higher explanation of the total
variability in the calibration values without increasing the number of PLS
factors used.

Statistical parameters used to evaluatemodels performances included the
standard error of calibration (SEC), the determination coefficient for cross
validation (r2cv), the standard error of cross-validation (SECV), the
determination coefficient for prediction (r2pred), and the standard error of
prediction (SEP). SEC and SEP were calculated using an Excel spreadsheet
by squaring the differences of the actual minus the predicted concentrations
for each sample in the calibration (SEC) and test (SEP) sets. These values
were then summed, and the sumwas divided by the number of samples (n).
The square root of this value was used for SEC and SEP. SEC describes the
calibration set (243 acc.), and SEP describes the test set composed of 58
samples not included in the calibration set. The ratio of performance to
deviation (RPD=SD/SECV)was also used to evaluate performances of the
models (with SD as the standard deviation of the original chemical data in
the calibration set).21 Finally, new calibrations were computed on the total
number of samples (243 + 58 = 303 acc.).

’RESULTS

Out of 340 varieties tasted, 26 were found to be “very good”,
69 “good”, 181 “acceptable”, and 64 were thought to be of “poor”
quality. For each of these four groups of varieties, the mean
standard variation and CV% of the mean score give an estimation
of the reliability of the appreciations within each group (Table 1).
The best 15 varieties were all rated 4�5�5�5�5. When three
scores out of five were equal to “5”, the variety was still con-
sidered as “very good”. Overall, 26 varieties were rated “very

good”, and the low CVs (9.3% and 11.9%) of their mean scores
indicate that these appreciations seem fairly reliable. In other
words, most tasters agreed on what characterizes a “very good”
taro variety. The “very good” varieties were subsequently selected
as recommended varieties and propagated for distribution to
farmers who also confirmed later their very good quality, strength-
ening the consensus. “Good” varieties also appear to be properly
rated with an average CV% ranging from 12.4 to nil. However,
ratings such as “acceptable” and “poor” quality appeared much
more difficult to appreciate during the blind tasting panel exercise.
Not less than 181 varieties were rated as “acceptable”. This might
be an indication of the difficulty of rating varieties with average
quality and is confirmed by the high mean CVs (22�26.3%) of
their mean scores.

Acridity was not rated evenly, and some consumers, especially
women, were more susceptible than others. The best 66 varieties
(mean scores from 4.2 to 4.8) were found to be free of acridity
by all tasters. Out of 340 varieties consumed after boiling, 64
varieties were rated acrid, but these belong to different quality
groups ranging from poor to good. Some of these varieties might
need a longer cooking time and/or a different preparation to be
palatable (Table 1).

Overall, 315 taro accessions were analyzed for the chemical
variation of their major constituents. They originated from
five SE Asian countries and 12 different islands of Vanuatu. Great
care was taken to select morphologically distinct genotypes
within each country of origin. Varieties from Asia and the Pacific
were included in the sample as well as hybrids between the two
genepools. “Poor” quality varieties as well as “very good” and
recommended varieties were also included in the sample.

Results of the chemical analyses conducted on 315 accessions
are presented in Table 2. Significant variation was observed for
dry matter content (DM) and major constituents. The least vari-
able constituent was starch (CV% = 6.73), and the most variable
was total sugars (CV% = 79.51). Two subsamples assembling
26 “very good” and 38 “poor” varieties are also presented in
Table 2. There are remarkable differences between their mean
values with higher DM (40.66%) and starch (83.67%) contents
and lower amylose (17.31%), sugars (2.09%), cellulose (2.48%),
proteins (4.12%), and minerals (3.58%) values in “very good”
varieties. Correlation coefficients calculated between major con-
stituents indicate that starch content is positively correlated with
%DM but negatively correlated with sugars, cellulose, proteins,
and minerals contents (Table 3).

Principal component analysis conducted on the data matrix
(315 acc. � 5 major constituents) reveals the respective con-
tribution of the five variables to the projection, with axes 1 and 2
totalizing 69% of the total variance (Figure 1). Varieties rated
“very good” present all very similar chemical compositions with
starch content above 80% (Figure 2). Also, overall, varieties rated
as “very good” seem to have a low amylose/starch ratio, but there
is no clear-cut picture, and a few of these varieties also presented a
high amylose content.

The comparison of the NIRS spectra (Figure 3) and the
chemical values allowed the establishment of equations of calibra-
tion for the prediction of starch, sugars, proteins (equivalent N),
and minerals. The results are presented in Table 4. For starch, the
SECV (1.56%) and SEC (1.56%) values are identical, indicating
robust fitting. The SEP (2.14%) is not too distant, and the r2pred of
0.76 indicates an acceptable estimation of the equation accuracy
on the validation samples. Deviations of single samples are
visualized in a scatter plot betweenmeasured and predicted starch

Table 1. Results of Blind Tasting Panel Conducted by 10
Individuals on 340 Taro Accessions

quality

n

var.a
mean

score

mean

std

mean

CV %

n acrid

varieties %

very good (n = 26) 15 4.8 0.45 9.3 0 0.0

11 4.6 0.55 11.9 0 0.0

good (n = 69) 13 4.4 0.55 12.4 0 0.0

27 4.2 0.45 10.6 0 0.0

29 4.0 0.00 0.0 2 6.9

acceptable (n = 181) 33 3.8 0.84 22.0 2 6.1

43 3.6 0.89 24.8 6 14.0

36 3.4 0.89 26.3 10 2.8

34 3.2 0.84 26.1 6 17.6

35 3.0 0.71 23.6 9 24.7

poor (n = 64) 24 2.8 0.84 29.9 11 45.8

19 2.6 0.55 21.1 10 5.3

18 2.2 0.45 20.3 5 27.8

3 2.0 0.00 0.0 3 100.0

total 340 0.83 24.2 64 18.8
aNumber of varieties with the same mean score.
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values of the 58 acc. in the test set (Figure 4A). In terms of
predictive performance, the equations for starch could be con-
sidered as good with RPD parameters above 3. Some authors
claim that a RPD value of at least 3 is necessary for efficient NIR
reflectance predictions.21

Amylose statistical parameters revealed the poor perfor-
mances of the equations with r2cv, r

2
pred, and RPD values of

0.44, 0.15, and 1.67, respectively. The total sugar model presents
similar SECV (0.73) and SEC (0.75) values, but the SEP is much
higher (1.50), although the r2pred is of 0.74.When SECV and SEP
values differ significantly, this could be an indication that too
many samples (HT > 3 = 21) were removed during the modeling
process. The RPD value of 4.01 indicates, however, a good pre-
dictive potential for this equation. Deviations of single samples are
visualized in a scatter plot betweenmeasured and predicted sugars
values (Figure 4B). Cellulose could not be satisfactorily predicted,
and a poor r2cv (0.61) was obtained, with very low r2pred (0.37)
and RPD (2.05). Proteins (measured as total N equivalent)
produce similar SECV, SEC, and SEP values (respectively, 0.46,
0.57, and 0.57) and a high r2pred of 0.85, indicating good and
robust prediction with 85% of confidence. The RPD value above
3.5 confirms a very good potential of prediction for this model.
Deviations of single samples are visualized in a scatter plot
between measured and predicted proteins values (Figure 4C).
Minerals are known to have a poor relationship with NIRS, but
they presented similar SECV, SEC, and SEP values (respectively,
0.29, 0.35, 0.44) and could be predicted with 85% of confidence
with a good RPD value of 3.64. Deviations of single samples are
visualized in a scatter plot between measured and predicted
minerals values (Figure 4D).

The r2pred values of starch, sugars, proteins, and minerals are
high enough to allow good estimates of their contents. RPD
between 3.41 and 4.01 for the starch and sugars models also allow
good quantitative predictions to be made. Values above 2.5 for
proteins are considered to be good models,20 and the value here
is above 3.5. The number of terms is also relatively low if we
consider a general recommendation of 1 factor for every 10 samples
in a model (Table 4).

Calibrations were modeled again on 303 samples by adding
the calibration and validation sets. These new models (Table 5)
could not be validated on an independent test set. However,
their RPD values were high, and their SECV and SEC values were
close enough to suggest fair and robust fitting for starch (res-
pectively, 1.59 and 1.91), sugars (0.73 and 0.85), proteins (0.46
and 0.58), and minerals (0.29 and 0.38). The new model for
proteins presented a RPD value above 3.5, and such a value
indicates a very good predictive model.20 RPD values for starch

Table 2. Major Constituents Analyzed in 315 Taro Accessions (as % of DM Adjusted to Moisture Content)a

varieties DM starch amylose ratio a/s sugars cellulose proteins minerals

min 19.51 55.88 10.71 0.13 0.21 1.40 2.13 1.47

max 53.74 89.46 49.30 0.78 21.80 7.30 14.79 8.85

all mean 35.81 78.88 19.64 0.25 3.80 3.07 4.61 4.22

n = 315 std error 7.01 5.31 5.19 0.08 3.02 0.90 1.66 1.09

CV% 19.56 6.73 26.43 32.51 79.51 29.21 36.06 25.81

very good mean 40.66 83.67 17.31 0.21 2.09 2.48 4.12 3.58

n = 26 std error 6.69 3.81 3.73 0.05 1.54 0.60 1.32 0.87

CV% 16.46 4.56 21.54 22.79 73.65 24.32 31.92 24.22

poor mean 33.59 68.66 25.54 0.37 8.61 4.03 5.23 5.22

n = 38 std error 5.33 3.83 8.32 0.13 4.39 0.95 1.77 1.53

CV% 15.87 5.28 32.58 35.33 51.02 23.45 33.90 29.28

t testb 7.78 4.57 4.58 3.58 3.47 1.59 2.47 2.59
aComparison between 26 “very good” and 38 “poor” accessions. b Student t value = 2.02 at p = 0.005.

Table 3. Correlation Coefficients Between Major
Constituents for 315 Accessions (Pearson (n � 1))

variables DM starch amylosea sugars cellulose proteins

starch +0.372b

amylose +0.320b +0.542b

sugars �0.212 �0.721b �0.207

cellulose �0.283b �0.504b �0.292b +0.284b

proteins �0.179 �0.319b �0.218 +0.107 +0.203

minerals �0.400b �0.542b �0.558b +0.001 +0.407b +0.181
aOn 200 varieties. b r value at 1% = 0.254.

Figure 1. PCA of 315 accessions� 5 variables (starch, sugars, cellulose,
proteins, minerals).
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and sugars were also very high, respectively, of 3.30 and 4.13.
Again, the model for minerals is also very good with an RPD
value of 3.74. Values for cellulose were slightly improved, but the
low r2cv and RPD (0.56 and 2.11) do not allow retaining this
model for prediction. Models for starch, sugars, proteins, and
minerals present good potential but will need to be further tested
on independent samples.

Fresh taro corm quality is related to a certain chemical
composition, and different varieties are processed and cooked
into various preparations throughout the World.22 In Vanuatu, it
appears that “very good” varieties prepared after boiling have

high DM (>35%) and starch contents (>80% DM). Consumers
characterize these varieties as being “elastic”, and this apprecia-
tion refers to the somewhat firm texture felt when chewing a
piece of the boiled corm. The present analysis conducted on a
large sample confirms the results obtained by a previous pre-
liminary study on a much smaller sample of 31 varieties.3 Blind
panel tasters seem to reach a consensus when appreciating these
varieties

The models developed in the present study show good
accuracy, but it remains to be seen whether larger sample sets will
improve them to enable more precise prediction. When comparing

Figure 2. PCA of 315 accessions� 5 variables (starch, sugars, cellulose, proteins, minerals). Very good and good accessions with more than 80% starch
are in the small circle. Poor quality accessions, with less than 70% starch, are in the dotted line circle.

Figure 3. Infrared spectra of 303 taro varieties: x-axis, wavelengths; y-axis, absorbance. 350�750 nm is the visible range (variability due to colors of
samples), and 750�2500 nm is the NIR range. The water peaks are at 1450 and 1940 nm.
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the performance of the new calibration models (with n = 303), the
high r2cv and RPD values were confirmed. Determination coeffi-
cients (r2pred) generally improve as the working range increases.
Consequently, if more range is added in the same model, then it
could improve coefficient values. Additionally, when different
samples are added, a larger spectroscopic diversity is described,
and, therefore, some samples might actually be better spectrally
described as the number of samples in the calibration set in-
creases. However, determination coefficients for the prediction
set (r2pred) cannot reflect the whole situation because the range
of the 58 accessions values affects the coefficient values. These
values change according to the type and number of validation
samples, and it is necessary to consider the long-term effects.
Errors of prediction values have been shown to have uncertainties,
and it is therefore recommended to be cautious while reporting
prediction errors because they may change according to the
validation set used.23 SEP is, therefore, a better overall indicator.
Also, the selection of the calibration set was done by removing at
random 58 samples for the test set. The calibration set has not
covered the whole variation of the data set (303 acc.). A better
sample selection might be helpful by selecting, for example, on
constituent concentration rather than a random selection of
numbers. Further work should concentrate on validating the
results over different years.

The models for starch, sugars, proteins, and minerals present
potential for improvement if more samples could be added. The
lowest RPD was obtained for amylose, but it is not the first
time that this constituent is found difficult to analyze by NIRS.13

The protein content calibration is particularly interesting as it can
be further improved. Proteins content is usually estimated by
multiplying the total N content by a standard conversion factor of
6.25. However, the nitrogen to protein ratio does vary accor-
ding to the species considered and change with amino acid
content and mineral nitrogen and nonprotein nitrogen. For the
present study, we decided to present our results measured as total
N as proteins. In the future, it would be of interest to improve the
calibration models on the real protein content of taro, which vary
according to amino acids. Once known, the values obtained by
the Kjeldahl method could be converted into more accurate
measurements for NIRS calibrations on taro.

In taro breeding programs, mass selection results in the rapid
accumulation of suitable genes but has to be complemented with
efficient screening techniques of hundreds of hybrids generated
in controlled crosses. Correlation coefficients between major
constituents indicate that breeding for increased DM and starch
contents will reduce sugars, proteins, andminerals. These correla-
tions do not present practical problems as “poor” quality varieties
have been shown to present low DM and starch and high sugars,

cellulose, proteins, and minerals. Obviously, NIRS could assist
taro breeders in their choice and selection of the best genotypes,
based on the chemical composition requested by consumers by
predicting simultaneously starch, sugars, proteins, and minerals
on a single sample. As starch is significantly negatively correlated
with the other three major constituents, the simultaneous pre-
diction of all four constituents allows for rapid estimation of the
variety chemotype and therefore its quality.

Acridity is fairly difficult to score, but all varieties rated “very
good” by tasters are not acrid. Previous studies have shown that
raphides are not the only cause of acridity but that they could
play a major role in penetration and carrying the acrid factor.
The irritant is thought to be a proteinase or histamine, but
more research is needed to elucidate the complexity of this trait.2

However, it is reasonable to consider that from a genetic point of
view, acridity is a wild trait, comparable to cyanogens in cassava
or glycoalkaloids in potato, and used by the taro plant as
repellent to herbivores. Traditional varieties have reduced levels
of acridity, and it is possible to assume that this trait is negatively
correlated with improved quality, in other words, with higher
DM and starch contents. If this could be confirmed, it would be
possible to select for non acrid type by selecting for high starch
and low sugars, cellulose, proteins, and minerals. This ques-
tion is important for breeding programs and deserves further
research.

Variation in taro mucilage was observed but was not studied,
although mucilage is also an important factor in the determina-
tion of taro quality. The main components of this mucilage have
been shown to be galactose, arabinose, and an arabinogalactan-
protein, all varying in great proportion according to the variety.24

More studies are needed to elucidate the respective roles of these
compounds for eating quality. Also, taro corms have been shown
to present variable carotenoids, anthocyanins, and phenolic
compounds, mostly responsible for different corm flesh colors.
Regarding carotenoids, taro varieties present all-trans-β-carotene,
small amounts of lutein, and two unknown substances.5 Flavonols
content is very high with not less than nine components includ-
ing catechin and epicatechin, indicating an interesting source of
healthy components in taro corms.6 The varying colors, as shown
by the visible range of the spectra (350�750 nm) (Figure 3),
increased in intensity after boiling, but these colors were not
scored by tasters. The relationships between secondary meta-
bolites and quality remain to be demonstrated, but it is quite
clear that consumers often prefer colorful taro corms rather than
white flesh.

Some preliminary basic information now exists on the relation-
ship between chemotypes and taste, but much more is needed
to understand the chemical variation between varieties. Taro is a

Table 4. Statistical Parameters of the Calibration and Validation Sets

calibration (n = 245) validation (n = 58)

constituents mean % DM SD SEL ( HT H > 3 PLS terms r2cv SECV SEC RPD r2pred SEP

starch 79.22 5.32 2.38 21 12 0.89 1.56 1.56 3.41 0.76 2.14

amylosea 19.58 4.71 0.59 15 3 0.44 2.88 3.66 1.67 0.15 5.76

sugars 3.74 2.94 0.11 19 12 0.90 0.73 0.75 4.01 0.74 1.50

cellulose 3.03 0.85 0.09 20 8 0.61 0.41 0.41 2.05 0.37 0.83

proteins 4.64 1.73 0.09 21 9 0.89 0.46 0.57 3.78 0.85 0.57

minerals 4.09 1.06 0.08 16 8 0.90 0.29 0.35 3.64 0.85 0.44
aCalibration set of 160 acc. and validation set of 40 acc.
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diploid species, but nothing is known on the segregation of these
major constituents. The problem is rather complex as these
constituents are most likely controlled by many sets of different

genes, andmolecular tools can hardly be used formarkers assisted
selection and conventional selection of parents for breeding or
selection. Other constituents such as carotenoids or flavonols
should be investigated as well, but they present very low concen-
tration in the DM. NIRS offer interesting perspectives for spectra
assisted selection.

Growing urbanization implies that taro corm quality is
controlled and that new products are developed. Increasing
numbers of urban dwellers have the resources to buy taro corms
presented in convenient supermarket-style packages. If processed
into snack foods, vacuum packed products, and special flours, taro
would be in demand in growing Asian or African cities. In
addition, the gelling properties and general sensory characteristics
of taro open up the possibility of a completely new range of
products. This potential is enhanced by globalization, and con-
sumers in Western countries are eager to try novel foods,
especially those from the tropics. In many developing countries,
there is now a strong desire to develop taro production by
breeding for improved corm quality.
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Figure 4. Validation results of the NIRS models for starch (A), sugars
(B), proteins (C), and minerals (D).

Table 5. New Calibration with 303 Accessions

constituents

mean

%DM SD SEL(
HT

> 3

PLS

terms r2cv SECV SEC RPD

starch 78.88 5.27 2.36 27 11 0.89 1.59 1.91 3.30

sugars 3.85 3.03 0.12 24 12 0.90 0.73 0.85 4.13

cellulose 3.07 0.89 0.09 28 9 0.56 0.42 0.54 2.11

proteins 4.61 1.68 0.09 28 11 0.89 0.46 0.58 3.61

minerals 4.21 1.1 0.08 25 11 0.90 0.29 0.38 3.74
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Mahalanobis distance limit; HT, number of outliers removed;
%DM, percentage of dry matter; CV%, coefficient of variation
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